>> Amazon.co.jp
このページのQRコード

Stable Homotopy Theory : Lectures delivered at the University of California at Berkeley 1961. 1st ed. 1964

種類:
電子ブック
責任表示:
by J.F. Adams
出版情報:
Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1964
著者名:
シリーズ名:
Lecture Notes in Mathematics ; 3
ISBN:
9783662159422 [3662159422]  CiNii Books  Calil
注記:
1. Introduction -- 2. Primary operations. (Steenrod squares, Eilenberg-MacLane spaces, Milnor’s work on the Steenrod algebra.) -- 3. Stable homotopy theory. (Construction and properties of a category of stable objects.) -- 4. Applications of homological algebra to stable homotopy theory. (Spectral sequences, etc.) -- 5. Theorems of periodicity and approximation in homological algebra -- 6. Comments on prospective applications of 5, work in progress, etc.
Before I get down to the business of exposition, I'd like to offer a little motivation. I want to show that there are one or two places in homotopy theory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential topologists. Since Bott, we know that ~ (SO) is periodic with period 8: r 6 8 r = 1 2 3 4 5 7 9· . · Z o o o z On the other hand, ~S is not known, but we can nevertheless r ask about the behavior of J. The differential topologists prove: 2 Th~~: If I' = ~ - 1, so that 'IT"r(SO) ~ 2, then J('IT"r(SO)) = 2m where m is a multiple of the denominator of ~/4k th (l¥. being in the Pc Bepnoulli numher.) Conject~~: The above result is best possible, i.e. J('IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI'e ~ No proof in sight. Q9njecture Eo If I' = 8k o
ローカル注記:
岐阜大学構成員専用E-BOOKS (Gifu University members only)
オンライン
所蔵情報
Loading availability information
子書誌情報
Loading
タイトルが類似している資料
1. Stable Homotopy Theory : Lectures Delivered at the University of California at Berkeley 1961. 2nd ed. 1966
by J.F. Adams , Springer Berlin Heidelberg : Imprint: Springer , 1966

類似資料:

1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 

Adams, J.F., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Griffiths, Phillip, Morgan, John, SpringerLink (Online service)

Springer New York : Imprint: Birkhäuser

Edwards, D. A., Hastings, H. M., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Mardesic, S., Segal, J., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

4 電子ブック Stable Homotopy Theory

Adams, J. F., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Barratt, M. G., Mahowald, M. E., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Lewis, L. Gaunce Jr., May, J. Peter., Steinberger, Mark., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Mimura, Mamoru., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Bott, R., Gitler, S., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Hopf, Heinz., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer