>> Amazon.co.jp
このページのQRコード

Fractional-in-Time Semilinear Parabolic Equations and Applications. 1st ed. 2020

種類:
電子ブック
責任表示:
by Ciprian G. Gal, Mahamadi Warma
出版情報:
Cham : Springer International Publishing : Imprint: Springer, 2020
著者名:
シリーズ名:
Mathématiques et Applications ; 84
ISBN:
9783030450434 [3030450430]  CiNii Books  Calil
注記:
1. Introduction.-1.1 Historical remarks .-1.2 On overview of main results and applications .-1.3 Results on nonlocal reaction-diffusion systems 2. The functional framework.-2.1 The fractional-in-time linear Cauchy problem .-2.2 Ultracontractivity and resolvent families .-2.3 Examples of sectorial operators .-3 The semilinear parabolic problem.-3.1 Maximal mild solution theory .-3.2 Maximal strong solution theory .-3.3 Differentiability properties in the case 0 < a < .-3.4 Global a priori estimates -- 3.5 Limiting behavior as a ®1 -- 3.6 Nonnegativity of mild solutions .-3.7 An application: the fractional Fisher-KPP equation .-4 Systems of fractional kinetic equations .-4.1 Nonlinear fractional reaction-diffusion .-4.2 The fractional Volterra-Lotka model .-4.3 A fractional nuclear reactor model .-5 Final remarks and open problems .-A Some supporting technical tools .-B Integration by parts formula for the regional fractional Laplacian .-C A zoo of fractional kinetic equations.-C.1 Fractional equation with non
This book provides a unified analysis and scheme for the existence and uniqueness of strong and mild solutions to certain fractional kinetic equations. This class of equations is characterized by the presence of a nonlinear time-dependent source, generally of arbitrary growth in the unknown function, a time derivative in the sense of Caputo and the presence of a large class of diffusion operators. The global regularity problem is then treated separately and the analysis is extended to some systems of fractional kinetic equations, including prey-predator models of Volterra–Lotka type and chemical reactions models, all of them possibly containing some fractional kinetics. Besides classical examples involving the Laplace operator, subject to standard (namely, Dirichlet, Neumann, Robin, dynamic/Wentzell and Steklov) boundary conditions, the framework also includes non-standard diffusion operators of "fractional" type, subject to appropriate boundary conditions. This book is aimed at graduate students and research
ローカル注記:
岐阜大学構成員専用E-BOOKS (Gifu University members only)
オンライン
所蔵情報
Loading availability information
子書誌情報
Loading
タイトルが類似している資料

類似資料:

1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 

Sandev, Trifce., Tomovski, Živorad., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Holcman, David., Schuss, Zeev., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Choulli, Mourad., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Diagana, Toka., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Gonçalves, Patrícia., Soares, Ana Jacinta., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Berezovski, Arkadi., Soomere, Tarmo., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Henry, Daniel., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Gosse, Laurent., Natalini, Roberto., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Prüss, Jan., Simonett, Gieri., SpringerLink (Online service)

Springer International Publishing : Imprint: Birkhäuser

García Guirao, Juan Luis., Murillo Hernández, José Alberto., Periago Esparza, Francisco., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Hu, Bei, SpringerLink (Online service)

Springer-Verlag Berlin Heidelberg

Sachdev, P.L., Srinivasa Rao, Ch, SpringerLink (Online service)

Springer-Verlag New York