>> Amazon.co.jp
このページのQRコード

Asymptotic Expansion of a Partition Function Related to the Sinh-model. 1st ed. 2016

種類:
電子ブック
責任表示:
by Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
出版情報:
Cham : Springer International Publishing : Imprint: Springer, 2016
著者名:
シリーズ名:
Mathematical Physics Studies ;
ISBN:
9783319333793 [3319333798]  CiNii Books  Calil
注記:
Introduction -- Main results and strategy of proof -- Asymptotic expansion of ln ZN[V], the Schwinger-Dyson equation approach -- The Riemann–Hilbert approach to the inversion of SN -- The operators WN and U-1N -- Asymptotic analysis of integrals -- Several theorems and properties of use to the analysis -- Proof of Theorem 2.1.1 -- Properties of the N-dependent equilibrium measure -- The Gaussian potential -- Summary of symbols.
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core  aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integr
ローカル注記:
岐阜大学構成員専用E-BOOKS (Gifu University members only)
オンライン
所蔵情報
Loading availability information
子書誌情報
Loading
タイトルが類似している資料

類似資料:

1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 

Sandev, Trifce., Tomovski, Živorad., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Unterberger, Jérémie., Roger, Claude., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Katori, Makoto., SpringerLink (Online service)

Springer Nature Singapore : Imprint: Springer

Frank, T.D., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Shlesinger, Michael F., Zaslavsky, George M., Frisch, Uriel., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Dürr, Detlef., Teufel, Stefan., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Dobrushin, Roland L., Kusuoka, Shigeo., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Lima, Ricardo., Streit, Ludwig., Vilela Mendes, Rui., SpringerLink (Online service)

Springer Berlin Heidelberg : Imprint: Springer

Carinci, Gioia., De Masi, Anna., Giardina, Cristian., Presutti, Errico., SpringerLink (Online service)

Springer International Publishing : Imprint: Springer

Brezin, Édouard., Kazakov, Vladimir., Serban, Didina., Wiegmann, Paul., Zabrodin, Anton., SpringerLink (Online service)

Springer Netherlands : Imprint: Springer

Hora, Akihito., SpringerLink (Online service)

Springer Japan : Imprint: Springer

Anishchenko, Vadim S., Astakhov, Vladimir., Neiman, Alexander., Vadivasova, Tatjana., Schimansky-Geier, Lutz., …

Springer Berlin Heidelberg : Imprint: Springer